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Group manifold approach to field quantisation? 

V AldayaS, J A de AzcBrragaSO and S Garcia11 
Departamento de Fisica Tebrica, Facultad de Ciencias Fisicas, Universidad de Valencia, 
46100 Burjassot, Valencia, Spain 

Received 27 April 1988 

Abstract. We generalise a previously introduced group manifold approach to quantisation 
in order to apply it to the quantisation of free fields. The procedure is based on the 
consideration of infinite-dimensional groups, for which the appropriate generalisations of 
certain concepts of ordinary Lie group theory are introduced. The cases of the Klein- 
Gordon and the Proca fields are treated in detail, the latter to illustrate the treatment of 
constraints. The zero-mass limit of the vector fields is also briefly discussed in connection 
with the Stuckelberg formalism. 

1. Introduction 

As a rule, the formalisms of geometrical quantisation [ l ,  218 face a difficulty when 
they are applied to the simplest relativistic system, the free particle. This is because 
the basic quantum relations [qi,  pj] = ifis; do not permit the q i  to be associated with 
generators of the PoincarC group as in the case of the ‘non-relativistic’ Galilei group 
(see, e.g., [3] and references therein). This difficulty is also present in the group 
manifold approach to geometric quantisation [4,5], where it manifests itself as a 
consequence of the trivial symplectic cohomology of the PoincarC group 8, which is 
the starting point for the theory. Indeed, 8 does not allow for the above commutation 
relations or, in other words, does not admit the U(1) central extensions which are 
essential in the quantisation process (see [6] for a detailed discussion). This problem 
of the geometric ‘first quantisation’ of the free relativistic particle on a group manifold 
may be overcome by means of pseudoextensions of the PoincarC group [6] or by 
substituting a contraction of the conformal group with non-trivial cohomology (leading 
to an off-shell relativistic dynamics as an intermediate step) for the PoincarC group 
[3,7]. Also, and in the broader context of (pseud0)classical systems including fermions 
[8], we have used [9] the N = 2 super-Poincar6 group, which does admit central charges 
[ 101, to first quantise the Fayet-Sohnius basic matter hypermultiplet [ll]. 

The quantisation of a free ‘classical’ field (the ‘second’ quantisation) corresponds 
to the quantisation of a system with infinite (continuous) degrees of freedom. The 
starting point for its quantisation will accordingly be an infinite-dimensional Lie group 
manifold. We may thus use this fact to avoid the non-extension theorem for 8 to 
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quantise relativistic fields; this is the purpose of the present paper. As we shall see, 
9 will be contained in these infinite-dimensional groups but none of its parameters 
will play the role of basic coordinate or conjugate momentum. (Although we shall 
not discuss it here, the possibility exists of considering infinite-dimensional graded 
groups to simultaneously incorporate bosons and fermions into the scheme.) 

The paper is organised as follows. In 9 2 we succinctly summarise the group 
quantisation formalism and apply it to the harmonic oscillator in Bargmann-Fock- 
Segal coordinates. In 9 3 we extend the formalism to the infinite-dimensional case and 
use it to quantise the free Klein-Gordon (KG) field. Section 4 is devoted to the Proca 
field and to analysing the incorporation of constraints into the scheme. Finally, the 
Stiickelberg formalism and the zero-mass limit are briefly discussed. 

The necessary generalisations of some familiar concepts in Lie group theory to the 
infinite-dimensional case are performed, when required, in the main text. They are 
completed with three appendices on cohomology, invariant vector fields and symplectic 
structure. 

2. The group manifold approach to quantisation and the harmonic oscillator 

The group approach to quantisation (GAQ) [4,5,12] is a canonical algorithm which 
derives quantum manifolds [l] from a class of Lie groups, much in the same way that 
the Kirillov-Kostant method [ 131 obtains symplectic manifolds from Lie groups. To 
be more precise, the GAQ allows us to derive generalised quantum manifolds since the 
evolution parameter (time) is naturally included in the formalism. The necessary 
requirement for a group to be a quantum group 6 is to have a principal bundle structure 
with structure group U(1). Such a condition singularises a component of the (Lie 
algebra 6-valued) left-invariant canonical 1-form O L  on 6 [14], the vertical component 
O L v =  0, which defines a left-invariant connection-form ([14], p 103)T. 

The above generalised quantum manifolds do not have to be contact manifolds. 
This allows for the presence on the base manifold of variables which, like time, are 
not included in the (symplectic) pairs of canonically conjugated variables. The presence 
of time allows us, unlike in the conventional formalism [l] ,  to define generalised or 
full polarisation conditions which include a condition on the wavefunction which is 
none other than the wave equation. The variables which do not belong to the set of 
pairs of conjugate variables determine the vector fields which generate the characteristic 
module (eo = ker 0 n ker d o ;  it is the quotient manifold Q = 61 Ce, which is an ordinary 
quantum manifold in Souriau's sense [l] with the contact form given by 01, [4,12]. 
The full polarisation, which generalises the polarisation conditions of Souriau and 
Kostant [ l] ,  is defined [4] as a left maximal horizontal subalgebra P containing (eo. 

The Hilbert space of wavefunctions is made out of @-valued functions on 6, 
fulfilling the condition of being U( 1)-equivariant: 

EI/I = irC, ( 2 . 1 ~ )  

where E is the vertical (U(1)) left generator, and fully polarised, i.e. 

xp*=o V X P E  P. (2.lb) 

+ T h e  components of O L  may be _easily oktained by 1-form/vector field duality considerations from the 
left-invariant vector fields of X L ( G )  -T,(G) which generate the right action of G on itself. The vertical 
component OLv is dual to the U(1) vector field E, i ,OLv= 1, O L v  (any other left vector field) = 0. 
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If there is an absolute evolution parameter in 6, i.e. an element in the centre of the 
subalgebra generated by %e [ 121, (2.1 b )  contains the evolution (Schrodinger) equation. 
Once the wavefunctions for the system are characterised, the basic quantum operators 
are defined as the right-invariant vector fields ZRT. The quantum group also provides 
us with an invariant measure d p  to define a scalar product for functions on the base 
manifold 6 / U ( l ) ,  

(+’I+) = [ +’*+ d P  (2.2) 
C/U( l )  

once the U ( l )  parameter dependence has been factored out using (2.la),  on Q / U ( l )  
or on the polarised manifold (see [12]) circumventing the delicate problem (see, e.g., 
[2]) of the half-forms in this way. 

A particularly interesting situation appears when 6 is a central extension of a group 
G by U(1). Then, 6 has the group law 

(2.3) 
where i = (g, 5) E 6, 5 is the U ( l )  parameter, g‘* g is the group law for G and f(g‘,  g )  
(the 2-cocycle) is an R-valued function on G x G  which characterises the central 
extension and in whose definition the Planck constant h entersf. In this case, the 
central extension 
describes the classical limit of the quantum system associated with d [ 121. 

Because the quantisation of a field essentially amounts to the quantisation of an 
infinite number of oscillators, let us first recall the group manifold quantisation of the 
harmonic oscillator [4,5]. The starting point is the associated quantum group 6(,,,,,) 
defined by the group law (henceforth we shall take h = 1) 

i“= i’i = (g’*g, 5‘5 exp[it(s’, g)l)  

of G by R also exists, and it may be shown [4, 121 that 

cit = c’ e-iwB + R’C c, c+ E c3 c+= c* 
C+ll = Cfl elUB + RICI 

where the 2-cocycle is given by 

t(g‘, g )  = +i( C’R’C+ e-’”’ - C’’R‘C elwB) ( 2 . 5 ~ )  

and the rotations are parametrised by 

R( E ) 1, = ( 1 -4. ’)a; (1 -a&  2)”2v > k &  + $ & I & ,  (2.5b) 
where 17 f,k is the fully antisymmetric tensor. By using the familiar change of variables 

C-t  (m/2w)”’(oA+iV) 

Ct -t ( m/ 2w wA - i V) 

t The action of the right-invariant vector fields of the algebra d is w ~ l l  defined because [gL, ZR] = 0 and 
thus (2.la, b )  are preserved under the action of the elements of XR(G). The action of YtR(6) is also well 
defined 0,“ the manifold 6/ e, because V, is generated by a left-invariant subalgebra. 
$When G has a central extension structure, the 1-form dual to the fundamental (vertical) vector field E 
defines a horizontal subspace of the tangent space T,-(G) at each point i E G. Both objects depend on the 
specific group law given for G, which, due to the coboundary ambiguity of the extension [ 6 ] ,  is not unique. 
It is nevertheless possible to give a canonical definition for the (vertical 1-form) BL‘ which depends only 
on the cohomology class and which characterises the corresponding extension cocycle [12]. 
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it can be seen that 6(m,w) is the central U(1) extension of the group G(m,w) which 
contracts to the ten-parameter Galilei group when the frequency w of the oscillator 
goes to zero. 

To proceed with the GAQ we first compute the left- and right-invariant vector fields 

V Aldaya, J A de Azca'rraga and S Garcia 

2" ---iwc--+iwc+- a a a 
-aB aC ac' 

(2.7) 2 , L = & X - + ( l - s &  a 1 2 ) 1 / 2 d  
a& a s  

The commutation relations for the LIVF are 

[2$, 2;+]= iE 

[2i, Rk]= i w 2 k  

[Xi ,  X k + ]  = - iwzk+ [E, any vector field] = 0. 

[2i, 23 = o  
[ZE;, 2h]= Tkv2bk 

I *  

Those for zR are the same but for a minus sign. From the duality conditions 

i x L @  = 0 V X L #  E iE@ = 1 (2.10) 

0 = f i (  C+ d C  - C dC+)  - wCC+ dB + dl/i(. 

%@ = (25,2k) (2.12) 

we obtain 

(2.11) 

It is now seen that the characteristic module is generated by 

whose integral curves are the 'equations of the motion'. Indeed, the equations coming 
from (2.12) tell us that B is just a parameter of these trajectories, while the other 
variables are E independent. The physically meaningful evolution equations are those 
derived from 2i: 
dC/ds  = -iwC dC'/ds = i w C +  dB/ds = 1 d l /ds  = 0 (2.13) 

giving the trajectories 

C(S) = C, e-iws C+(s)  = c,' eiws B = s  l=&. (2.14) 
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Thus, the quantum manifold Q = 6(m,uJ %@ is parametrised by the initial values 
(CO,  C:, lo) and the corresponding contact form 01, is given by 

(2.15) 01 = $i( C,’ d CO - CO d C,’) + dJo/iJo 
from which we obtain the symplectic (curvature) form 

w = d(@/,) = i d C i  A dCo. (2.16) 

We now adopt, as the polarising subalgebra P, the one including kk, 2: and g&. 

( 2 . 1 7 ~ )  

(2.17b) 

(2.17 c) 

(2.17d) 

Equation (2.17d) is simply the evolution equation in the Bargmann-Fock-Segal picture 
(see, e.g., [15]), except for the zero-point energy [4,5]t. The natural measure turns 
out to induce the scalar product for complex holomorphic functions, 

Conditions ( 2 . 1 ~ )  and (2.lb) now imply 

E$ = i$ + $(C, C+, R, B, J )  = J+(C, C+, R, B )  

k,“+ = 0 + +( C, C+, R, B, 5) = J$( C, C+, B )  

2& = o  + +(c, c+, R, B, 5) = 5 e x p ( - ~ ~ + / 2 ) p ( ~ + ,  B )  

gk$ = 0 + acp/aB fiwC+ap/dC+ = 0. 

($’I$>= I d C  d C +  e-cc+p’*(C+, B)p(C+, B )  (2.18) 

including the weight factor exp( - 1  Cl*), which naturally appears because of the polarisa- 
tion condition (2.17~) .  

The quantum operators are, except for an i factor, the restriction of the RIVF to 
the above space of polarised wavefunctions. Because LIVF which generate commute 
with the RIVF the quantum operators in the ‘(2: representation’ are given by 

R6 

a +  = iC,’ 

E = wa+a 

a = -ia/aCi 

L =  i a + x  a 
(2.19) 

where we recognise the usual creation, destruction, energy and angular momentum 
operators. 

3. The Klein-Gordon field 

We may now discuss the simplest free relativistic field. The quantum group associated 
with it will have to include the PoincarC group and an infinite number of oscillators. 
To describe the massive real KG field we thus propose the quantum group defined 
by the following group law: 

@’I( k )  = @ I (  k )  exp( -ikA’a) + @ ( A ’ - ’ k )  

@,”’(k) = @+’(k) exp(ikA’a)+@+(A’-’k) 

k e 0 ;  

(3.1) 

t See [12] for a discussion of the zero-point energy. In any case, this problem is absent if we supersymmetrise 
the harmonic oscillator by means of a graded quantum group. 
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.,. 
e(g', g )  = 1 J dfik[@'(k)@+(A'-'k) exp(-ikh'a) 

n ;, 

-a'+( k)@(A' - ' k )  exp(ikA'a)] (3.2) 

Because the translations a have dimensions of length, the continuous index k is clearly 
identified with the momentum ( h  = 1). The infinite character of 6,, is due to the 
(complex) group parameters @ ( k ) ,  @+(k) labelled by k, = (E = + ( k 2 +  m2)"2, k )  E fl;. 
The action of the PoincarC subgroup on a simple redefinition of these parameters (see 
(3.13) below) gives the usual transformation law of the components of the KG field 
Fourier expansion. 

It is the group parameters @ ( k ) ,  @+(k )  which allow us to construct the extension 
cocycle (3.2), which formally may be considered as a sum over an infinity of oscillator 
cocycles (appendix 1). It may be shown that the inequivalent 2-cocycles which may 
be defined on 6KG/U(1) = G K G  (i.e. the group defined by (3.1) alone; notice that GI<, 
is not a subgroup of 6,,) are all characterised by Lorentz-invariant real distributions, 

M ( k )  = a 6 ( k 2  -P)O(*ko)  % P E R  (3.3) 

much in the same way the inequivalent 2-cocycles of the Galilei group are parametrised 
by the mass. Equation (3.3) shows why the group parameters @ ( k ) ,  @'(k)  are labelled 
by tetramomenta on the mass shell?; in natural units, [ @ ( k ) ]  = [ @ + ( k ) ]  = (mass)-'. 

We now apply the GAQ as before. Because @( k ) ,  @+( k )  represent a continuum of 
group parameters, the vector fields will now contain functional derivatives. The LIVF 

and RIVF are given by (see appendix 2 and [3]) 

z f j ( k j  = 6 /8@(Ak)  -fi@+(Ak)E 

J i k + ( k )  = s/s@'(hk)+$@(Ak)E 

and 

t If k was not restricted in (3.1) to be on a:, the characteristic module 
@+( k )  corresponding to k E 

would be enlarged by the @ ( k ) ,  
which would then disappear from the scheme anyway. 



Group manifold approach to jield quantisation 427 1 

2; = j+ E 
respectively, where m,,(k) = S$kpa/dke/n;,, i.e. 

mOi(k) = Ed/dki mJk) = kja/aki - kia/akj. (3.6) 
Their Lie brackets are given in appendix 2. We shall only give here the commutator 

[ g k + ( k ) ,  2 k ( k ’ ) ]  = -iAkk’E (3.7) 

where h k k ”  ( 2 ~ ) ~ 2 E S ~ ( k  - k’) ,  which exhibits the conjugate character of @ and @’. 
Notice that the functional derivative has been defined for the measure d o k ;  thus 
[S/S@(k)] = [ S / S @ + (  k)] = (mass)-’ as required by the dimensional homogeneity of 
the terms in (3.4) and (3.5). 

From (3.4) and the duality conditions the generalised quantisation form 0 is derived 
to be 

dRk(@+(k) d@(k)-@(k)  d@+(k)) 

d o k  k”@(k)@+(k) da, + d l / i l  (3.8) - I,: 
by using the relations among the cotangent T*(GKG) and tangent T(&) space 
coordinates 

S@(k) S@+(k) S@’(k) S@(k) 
S@+(k’)- S@(k’) 

- A k k ’  a@+( k’) - S @ (  k’) - 

da”  (5) = 8; 

(3.9) 
deaP (5) = SE{ 

From (3.8) the presymplectic form dO is easily derived: 

dO = i dRk d@’( k) A d@( k) J n:, 
- dflk k”(@(k) d@.’(k)+@+(k) d@(k))  Ada,. J,: (3.10) 

The characteristic module is now seen to be generated by the LIVF of the PoincarC 

%@ = (2t;,, a$, (3.11) 

as might be expected from (3.1) and (3.2) (cf (2.4) and (2.12)). To obtain the integral 
manifold of the differential system (3.1 1) we label the respective integration parameters 
A ”  and A’”’. From 2:s~ we then get 

subalgebra 
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Similarly, 2:- gives 

V Aldaya, J A de Azca’rraga and S Garcia 

The integration gives the trajectories for the group parameters 

eDLP = ~ * p ( A p ” )  

a, = Aa,hp 

l = l o  

@( k )  = @o( k )  e-ika 

@+( k )  = @of( k )  eika 

of which those of are uninteresting because of (3.17) below. 
The quantum manifold Q = GKG/ %“e is parametrised solely by 

(3.12 b) 

(3.13) 

On Q, 0 and dO adopt the form @ / g o  = 01, 

d R k ( @ i ( k )  d@,(k)-@,(k) d @ i ( k ) ) + d l o / i l o  ( 3 . 1 5 ~ )  

del, = i dnk d@of( k) A dQo( k )  (3 .15  b) 

obtained by substituting (3.13) into (3.8) and (3.10) respectively. The 2-form (3.15b) 
defines a symplectic structure (S = Q/U( l ) ,  w = dels)  which together with its Poisson 
brackets is discussed in appendix 3. 

To complete the quantisation programme we need to construct a Hilbert space 
X ( G K G )  where the Lie algebra of cKG is represented unitarily; the introduction of 
polarisation conditions will provide an irreducible representation. We take P as the 
subalgebra generated by (cf 0 2) 

P =  (z?k(k), gkw, z?f.W’). (3.16) 

Thus, the elements of X(cKG) are the functionals + E  % [ G ~ K ~ ] ,  +:cKG+@, which 
satisfy the conditions ( 2 . 1 ~ )  and (2 . lb) ,  namely 

W = i$ * $ [ @ ( k ) ,  @+(k) ,  A, a, 51 = l $ [ @ ( k ) ,  @ + ( k ) ,  A, a1 ( 3 . 1 7 ~ )  

gk=@+=O =$ $ [ @ ( k ) ,  @ + ( k ) ,  A, a, 51=5$[@(k), @+(k) ,  a1 (3.176) 

I,, 

( 3 . 1 7 ~ )  

(3.17d) 

The last equation generalises (2.17d) to the present case. Using ( 3 . 1 7 ~ - c ) ,  the general 
solution may be written in the form 
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where the functional cp[@+(k), a ]  is a solution of (3.17d). Its general factorised analytic 
form has the expression 

x@+(k,)  exp(-ik,a) . . . @+(k,) exp(-ik,a) (3.19) 

where the function cp( k,, . . . , kn) is symmetrical under the interchange of the momenta. 
Because @‘(ki) exp(-ik,a) = @i(ki )  (see (3 .13)) ,  the functional (3.19) defines the 
familiar functional cp[@:] on S. The scalar product of two functionals $’, $ is given 
by 

which is usually considered as the definition of the scalar product for the functionals 
cp’, cp themselves. We recognise in (3.18) and (3.20) (cf ( 2 . 1 7 ~ )  and (2.18)) the Gaussian 
measure for the KG field which arises in a natural way in the GAQ. 

The basic quantum operators are given 
their action on the functionals $E %(ejKG): 

z&k,$ = - N  eWika@+(k)cp 

by the R ~ F  (3.5). Using (3.17) we find 

( 3 . 2 1 ~ )  

(3.21b) 

( 3 . 2 1 ~ )  

(3.21 d )  

where N is given by 

N = r exp ( - t  5,; dnkl@(k)l’). (3.21e) 

The expression for the physical operators is obtained by restricting (3.21) to the 
functionals cp which are defined on the manifold Q / U ( l )  parametrised by @dk) ,  
@ l ( k )  (see (3.13)). On these functionals cp = cp[@:(k)] (i.e. in the ‘@:(k) representa- 
tion’) we get 

a ( k )  = i22+(k) =is/a@,+(k)  ( 3 . 2 2 ~ )  

(3.22b) 

( 3 . 2 2 ~ )  

(3.22d) 
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which correspond to the familiar destruction, creation, 4-momentum and relativistic 
angular momentum operators (see, e.g., [16] p 117). Because of (3.22a, b )  we see that 

[ a ( k ) ,  U+(k)l = A k k ’  (3.23) 

(so that a, a+ are the customary annihilation and creation operators with relativistic 
normalisation) and that the operators (3.22) already arise in normal-ordered form. 

Once we have defined the operators a ( k )  and a + ( k ) ,  we can construct the Fock 
space in the usual way by defining 

1 
lk , ,  k 2 , .  . . , k , ) = -  a + ( k , ) a + ( k , ) .  . . a+(k,)JO) ( 3 . 2 4 ~ )  m 

where the $ ( k l ,  . . . , k,) are symmetric normalised functions: 

(3.25) 

We thus see that the GAQ leads to both the coherent state and the Fock state 
representations. Both are isomorphic and we can check readily [17] the equality of 
the scalar products between the states 1 $) and their biunivocally associated functionals * 

(4’3 $)=($‘I$) (3.26) 

where ($’, $) is the functional integral (3.20) and ($‘I$) is the bra-ket scalar product 

($ ’ I$)= f J do&,  . . . dak,(p’*(kl. .  . k n ) c p ( k l . .  . k , ) .  (3.27) 
n = ~  a;, I,; 

The isomorphism (3.26) is simple in the present (free) case because the integration 
in (3.20) involves a Gaussian measure. In general (non-free theories) (3.26) may be 
considered as a definition of the functional integral in terms of the new group operator 
analogues (3.24u, b) .  

To conclude this section we mention that, although we have restricted ourselves 
here to the real (neutral) KG field, the complex case is completely similar. It only 
requires enlarging the group with the appropriate new parameters to accommodate 
the antiparticle sector. 

4. The Proca field 

The quantisation of a field whose manifestly covariant transformation properties require 
more components than the physical degrees of freedom adds the extra difficulty of 
dealing with the constraints which eliminate the unphysical components. In geometrical 
language, this elimination corresponds to deriving a true symplectic structure which 
provides the quantisation of the physical degrees of freedom, as exemplarised by the 
Dirac method [ 181. 

The GAQ also provides an adequate framework to treat the class of constraints 
which appear when a quantum group 6, itself a central extension of a group G by 
U( l ) ,  may be further extended, i.e. when the extension leading to 6 had not exhausted 
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the cohomology of G. In these circumstances the constraints appear as vector fields 
enlarging %‘e and spanning a subalgebra with non-trivial cohomology [ 12, 191. We 
shall devote this section to illustrating these methods, using the case of the massive 
real vector field as an example. 

With a notation similar to that of (3.1), we propose the following quantum group 
6,, to describe the Proca field: 

( 4 . 1 ~ )  

1 
[(g’, g )  = -2 J d n k  M p u ( A ’ - ’ k ) A ! ~ ( @ ; ( A ’ - ’ k ) @ ~ ( k )  exp(-ikh’a) 

fl :, 

(4 . lb)  

where the group parameters @.,(k) and @ ; ( k )  are now labelled by a vector index and 
three continuous ones ( k e n : ) .  It should be noticed (see appendix 1 for a discussion 
of the cohomology of Gp,  the group given by ( 4 . 1 ~ )  alone) that the cocycle (4.lb) can 
be regarded as the sum of 

dRk A””[@;(A’-’k)@L(k) exp(-ikh’a) 

- @ p ( A ’ - ’ k ) @ : ’ ( k )  exp(ikA‘a)] (4.2) 
which may be considered as the ‘free’ one, that is, as corresponding to a vector field 
with no constraints, and 

[’(g’, g )  =s d n k ( A ’ - ’ k ) p k ” [ @ ; ( A ’ - ’ k ) @ ~ ( k )  exp(-ikh’a) 
:v 

(4.3) 

i l  
- ap (A‘ - ’k )@:’ (  k )  exp(ikA’a)] 

which, once added to (4.2), gives the transverse projector M’“(k). We thus see that 
the ‘longitudinal’ part of both Q p (  k )  and @ ; ( k )  is not involved in the extension of Gp. 

We now proceed with the GAQ as in the previous section. The LIVF are given by 

g&m(k) = A, . ‘ (S /S@,(Ak)+ t iM~p(Ak)@~(Ak)E)  

g&;(k) = A p . u (  S/6@L(Ak) -$Mu’ (Ak)@.,(Ak)E) 
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Their Lie brackets are given in appendix 2. We notice here that the commutator 

(4.6) 
- 

[zk;(k), 2 k v ( k s ) ]  = iM'""( k)AkkC 

does not correspond to the commutation relations of canonically conjugated variables. 
M'""(k) is singular and indicates the presence of constraints. 

The calculation of the generalised quantisation form is performed from (4.4) as 
before. The result is 

dflk M"(k)(@,(k) d@:(k) -@:(k) dQT(k)) 

- J d a k  M"(k)kw@,(k)@,(k) da, + d t / i l  
a: 

(4.7) 

from which we get 

d O = i J  dflkM'"(k)(d@v(k)r,d@T(k)) 
;, 

- dflkM'"(k)k'"(@,(k) d@:(k)+@:(k) d@,(k))Ada,. (4.8) 

2kw, 2:w (4.9) 

Ja: 

Using (4.7) and (4.8) we may now calculate %@. We find that is generated by 

(i.e. the LIVF of the Poincar6 subalgebra) plus 

(4.10) 

Let us now integrate %@. Let A'*, s ( k ) ,  s + ( k )  be the parameters of the integral curves 
of 2kw, %(k), %'(k). We shall ignore 2 : ~  because we have already seen that there 
is no contribution to Q from the Lorentz part. From 2kw we obtain 

(4.11) 
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and from % ( k ) ,  %+(k )  

(4.12) 

The integration of (4.11) and (4.12) is performed by taking the results of one of them 
as the initial conditions for the other. Beginning with (4.11), we obtain 

@,(k) = h,(k) exp(-ika) cap = E ~ O ( A W ’ ) + ~ ” P  

@:(k )  = h:(k) exp(ika) a, = R.,A + f, (4.13) 

5 = t o  
where h,(k), h;(k), f”’ and f, could still be functions of s(k)  and s + ( k )  to be 
determined by (4.12). Taking A,’’ = 0, A = 0 as initial conditions, (4.12) then gives 

( 4 . 1 4 ~ )  

(4.14b) 

Equations ( 4 . 1 4 ~ )  tell us that f”’ and f, are constants; f may be absorbed in A. Now 
from (4.14b) and ( 4 . 1 4 ~ )  we obtain 

where ( k )  and (P;o),( k )  are the corresponding integration constants. Having 
completed the integration of (4.11) and (4.12), the trajectories determined by %e are 

EOP = & “ P ( A ” ” )  a, = A,,A 5 = t o  ( 4 . 1 6 ~ )  

(4.166) 

By simply counting the integration parameters (vector fields) and the initial con- 
stants, we notice that we may dispose of one of them by shifting the parameter. In 
other words, a redefinition of the ‘affine’ parameter s (k)  in (4.16b), 

s ( k )  + s (k)  --(kU/”0ju(k) (4.17) 

(and similarly for s+( k)), allows us to write 

h,(k) = (k,/m)s(k)+[@(o,,(k) -(k,/m2)(kU@(o,,(k))1 ( 4 . 1 8 ~ )  

and, accordingly, to choose the integration constants 

@ T O j , ( W  = @,o,,(k) - (k,/”)(k“@(O)U(k)) (4.18 b) 
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in such a way that they are orthogonal to the 4-momentum k. With this selection the 
Lorentz condition 

k"@:,),( k )  = 0 k"@:&( k )  = 0 (4.19) 

is fulfilled by the initial constants and then (4.15) becomes the decomposition of h,(k) 
and h:(k)  in their longitudinal and transverse parts. 

The usual decomposition of @ & ) p ( k ) ,  @T,,(k) in the transverse modes is given by 

(4.20) 

where the 4-vectors & : ( I C ) ,  i = 1, 2, 3, fulfil the relations 

k " & l ( k )  = 0 & ; ( k ) & J p ( k )  = g" c &l(k)&:(k) = - ( g,, -- '$). (4.21) 

With this decomposition, the quantum manifold Q = 6,/ ie, is parametrised by 

I 

(C{O)(k) ,  Ctd,(k), 50)  i = 1,2, 3 (4.22) 

and the restrictions of 0 and dO to Q are obtained from (4.7) and (4.8) by using 
(4.16), (4.20)-(4.22) with the result 

Comparing with the KG case (3.15), it is seen that (4.23) is the sum of three symplectic 
forms written in Darboux coordinates. The symplectic structure is shown in 
appendix 3. 

Let us now discuss briefly the Hilbert space which will again be given in terms of 
functionals. With the polarisation defined by 

p = ( z k Y ( k )  , v(k) ,  % + ( k ) ,  zbv, zkpu) (4.24) 

the equations which determine the elements $ E  X ( 6 , )  are 

s$ = i$  * 9 = l $ [ Q p ( k ) ,  @ : ( k ) ,  A, a1 

*$+ = o + + = ~ + [ @ . , ( k ) ,  @:(IC), a ]  

( 4 . 2 5 ~ )  

(4.25b) 

(4.25d) 

(4.25e) 
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It is simple to see that (4.25e,f) imply that the functional + does not depend on the 
longitudinal part of @"(k) and @ L ( k ) .  Completing the three vectors Ei(k) of (4.21) 
with a fourth one, & : ( I C )  = k,/m, g"'E;(k)Ef(k) = gmp, we may write 

3 3 

@ : ( I C ) =  1 C"(k)&;(k) (4.26) 
a =o 

Q p ( k ) =  c C"(k)&;(k) 
a = o  

and check that because k"&;(k) = goa, (4.25e,f) become 

( 4 . 2 7 ~ )  

Using the rest of equations (4.25) we get 

( 4 . 2 7 ~ )  

Comparing (4.27b, c) with (3.17c, d) ,  we see that, formally, 
3 

X(GP) L- 0 2i(G;.G)lciiagTr4 
t - 1  

(4.28) 

where diag Tr, means that the translations (the spacetime variables) are common for 
all three X i ( e K C ) .  For instance, the factorised solution of ( 4 . 2 7 ~ )  is given by 

( 4 . 2 9 ~ )  

(cf (3.19)) and the scalar product in X(GP) is 

(cf (3.20)). The discussion of the Fock space picture and the functional integration 
made for the KG case follows a similar pattern here. 

To conclude this section we now discuss the q)antum operators on X ( G p ) .  The 
action of the RIVF (4.5) on the functionals E X(Gp) is given by 

with X@,(k)+ " R  = eCikaNM""(k)@;(k)cp 
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Thus, the action of the quantum operators on the cp[C&(k)] functionals, (polarised 
functionals on (GP/P)/U( l), i.e. defining the ‘Cto,(k)  representation’) is given by 

L 

(4.32) 

- i d a k (  mPv( k)a;( k)a”’( k))aiu(  k)a’(  k )  
i , j  I,, 

where Cfo) (k)  and Ct , ) (k)  are the initial constants for the evolution given by (4.16b) 
and (4.20), 

(4.33) 

5. Final comments: the Stuckelberg formalism and the zero-mass limit 

It is well known that, due to the gauge invariance, a description of the electromagnetic 
field cannot be obtained by taking the naive m+O limit for the massive vector field. 
From the point of view of the PoincarC elementary systems [20] this is due to the fact 
that in the limit m + 0 the little group for a massive particle, the rotation group, becomes 
the Euclidean group on the plane (6,) and this is not a smooth transition. Because 
our Proca quantum group is built on the PoincarC group, it is clear that we cannot 
expect to obtain a description of the Maxwell field just by setting m equal to zero in 
(4.1), and indeed this limit is not even defined (see (4.1b)). 

There is, however, a formalism which allows for a ‘good’ zero-mass limit in the 
sense that it leads to the right field propagators: the Stuckelberg formalism (see, e.g., 
[16] p 136), which is amenable to our approach. In the Lagrangian formalism, the 
Stuckelberg procedure is based on the addition of a gauge fixing term to the Lagrangian 
for a massive vector particle; the resulting theory describes a field whose transverse 
and longitudinal parts are on two different mass hyperboloids. A similar result may 
be achieved by the GAQ by adding to the Proca cocycle the ‘gauge fixing’ one 

- @z(R’-’k)@L(k) exp(-ikA’a) (5.1) 

which is defined on the hyperboloid of mass m’= m / a ,  where m is the mass of the 
original Proca field and A the dimensionless gauge fixing parameter. However, the 
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calculations are more involved than in the Proca case and we shall omit them. Thus, 
the GAQ does not overcome the familiar difficulties associated with the quantisation 
of the Maxwell field. 

As is well known, the Maxwell field presents a larger symmetry, given by the 
conformal group. Thus it would be more natural, perhaps, to develop the GAQ for the 
Maxwell field on the conformal rather than on the PoincarC group. Conformal quantum 
field theory [21,22], although experimentally relevant, is not itself without difficulties 
(for instance, the conventional gauge fixing term violates the conformal transformation 
properties of the 4-potential) and we shall not discuss it here. 

Appendix 1. Cohomology of GKG and GP 

To find all the possible U( 1) extensions of G K G ,  the base group for the quantum group 
C I K G ,  it is necessary to classify the 2-R-cocycles of G K G ,  i.e. all the bilinear maps 
5: GKG x G K G +  R, that fulfil the conditions 

5 k ’ ,  8 )  + 5(g’g, g”) = 5(g,  g”)  + 5 k ’ ,  gg”) 

5(e, 8 )  = 5k’, e )  = 0. 

(Al . l )  

(A1.2) 

The only vanishing Lie brackets of the generators of G K G  are 

(A1.3) 

Thus, the parameters which may be involved in an extension of G K G  are in principle 
@ ( I C ) ,  @‘(k)  and a, but due to the Lorentz transformations there is no contribution 
arising from the translation parameters a. The above results can also be obtained in 
a more rigorous way by generalising the method of Bargmann [23] to the case of 
infinite dimension. 

Bearing in mind the formal resemblance of the group law of G G K  with the quantum 
oscillator (2.4), it can be shown that the 2-R-cocycles are of the form (note the minus 
relative sign) 

&(g’, g) = i  1 d4kM(k)[@’(k)Q+(A’-’k) 

x exp( -ikA’a) -a’+( k)@(A’ - ’k )  exp(ikA‘a)] (A1.4) 

where M ( k )  has to be determined from the cocycle property (Al.1). A certain amount 
of calculation, including an integration by parts, leads to 

M (  k )  = M (  Ak) + M (  k )  = a8 ( k2  - /3 ) e( * ko)  a, /3 ER. (A1.5) 

Thus, the cohomology group of G K G  is parametrised by the set of Lorentz-invariant 
distributions (A1.5), much in the same way as the mass parametrises the cohomology 
group of a classical free particle. Note that M ( k )  also fixes the PoincarC orbit: only 
the group coordinates @ ( k )  and @+(IC) whose index k is on the mass shell contribute 
to the extension of G K G .  
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The previous reasonings for the cohomology group of GKG also apply to the case 
of the U ( l )  extensions of Gp. The only non-trivial 2-R-cocycles are of the form 

[ ( g ' ,  g )  = i d4k M'* ' (A ' - ' k )A 'Y .u[@.t (A ' - lk )@~(k)  exp(-ikA'a) 

- @'*(A'- 'k)@;+(k) exp(ikA'a)] (A1.6) 
where again M @ " ( k )  is determined by (Al.1).  One finds 
M F U (  k )  = a 6 ( k 2  -~ )O(*k , ) (Ag '*""  + y k p k u )  a, P ,  A, Y E  f-2. (Al.7) 

Appendix 2. The Lie algebras of GKG and Gp 

A2.1. Calculation of the invariant vector j e l d s  

Let G be an infinite-dimensional Lie group with coordinates g ' ( k ) ,  characterised by 
i = 1,2, . . . , and a continuous index k E E, and whose group law is written as g"(k)  = 
g ' ( k ) g (  k ) .  The obvious generalisation of the formula 

(A2.1) 

which gives the LIVF of an ordinary Lie group with coordinates g', where i = 1,2,  . . . , r 
is the finite index, is given by 

(A2.2) 

where the usual partial derivatives have been substituted by functional ones. In the 
case of GjKG and Cp, the continuous index k can be identified with the on-shell 
4-momentum of a massive particle. Thus 

a@+( k ' )  
a@+( k )  - "" 
~- 6 @ ( k ' )  

6 @ ( k )  - A k k '  

~- (A2.3) 

for GKG where h k k '  is the generalised delta function on the positive sheet of the mass 
hyperboloid with volume form ( 2 ~ ) - ~ ( 2 E ) - '  d3k. For GP (A2.3) is suitably modified. 
Using (A2.2) and (A2.3) the expressions for the L I V F  and R I V F  given in (3.4), (3.5), 
(4.4) and (4.5) are easily obtained. For instance 

and, for the Lorentz vector fields, 

(A2.4) 

(A2.5) 
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where ?'$(E) are functions ofthe parameters (see [3]). Recalling that, in our parametri- 
sation, 

A E  LI A = exp(fEaPlap) ( I a P ) W 7  = 6:; (A2.6) 

the final expression is given by 

(A2.8) 

where mUu( k) is restricted to the mass-shell hyperboloid (cf (3.6)). 

A2.2. Lie brackets 

By means of a formal series expansion of the group composition law, it may be seen 
that the structure constants of an infinite-dimensional group G are (cf (A2.1) and (A2.2)) 

(A2.9) 

where the derivatives are functional derivatives for the continuous index group coordin- 
ates and ordinary partial ones for the discrete indices. As an example, we calculate 
the bracket [z:~, 2 k ( k ) ] .  The only non-vanishing structure constants are 

Thus 
c 

(A2.11) 

The Lie brackets can also be calculated directly by using (A2.3). We do not need 
the explicit form of z : + u  and zrw to find the commutators where these fields are 
involved: by imposing the usual PoincarC commutation relations to the PoincarC 
subgroups of GKG and GP, the following equalities are obtained: 

For instance 

(A2.12) 

(A2.13) 
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We recover the former result (A2.11) if the first of (A2.12) is used. Notice the 
fundamental bracket which accounts for the extension of eKG: 

[2:+(,), 2 & ( k f ) ]  = - i A k k ’ s .  (A2.14) 
The rest of the commutators of the 6,, and eP algebras are calculated in the same 
way. The results are 

Klein-Gordon Proca 

I [E, = 0. 

One can also check that the Jacobi identities and the relations [gL, z’”] = 0 and [zL, gL] = -[gR, 2”] are fulfilled. 

Appendix 3. Symplectic structure and Poisson brackets 

As pointed out in 0 2 ,  the pair ( @ I w m ,  e/%&= Q )  is a contact manifold from which a 
symplectic structure ( U ,  S =  Q / U ( l ) )  can be obtained. The Poisson brackets (PB) on 
Ss-the ring of_complex functions with arguments on S-give a representation of the 
Lie algebra of G, due to the trivial cohomology of the extended (quantum) group. In 
the GAQ, the R I V F  generate symmetries with Hamiltonian functions taking constant 
v&%along the trajectories determined by %@. In other words, the RIVF are the 
generators of the Noether invariants (conserved currents). Note that, due to the fact 
that L p O  = 0, the Noether invariants are simply the inner product of 0 and the RIVF. 

A3.1. The Klein-Gordon quantum group 6,, 
The contact form and the symplectic form are given in ( 3 . 1 5 ~ )  and (3.156). The 
equation ix/w = -df implies that the Hamiltonian vector field 

(A3.1) 

is the generator associated with the Noether function(a1) f = f ( @ . , ’ ( k ) ,  Q 0 ( k ) ) .  Thus, 
the formula for the PB is, from its usual definition {L g }  = w ( X f ,  Xg): 

(A3.2) 
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analogous to the expression of PB in classical mechanics, as one could have predicted 
just by examining w. Note that, in particular, 

{@o(k),  @., t (k) )  = iAkk’. (A3.3) 

The RIVF are given in (3.5). Contracting with 0, the following constants of motion 
are obtained: 

R & k )  + i@+( k )  exp(-ika) 

z g + ( k )  + -io( k )  exp(ika) 
r 

(A3.4) 

The usual expression for the ‘physical’ Noether invariants is recovered by taking the 
Vo quotient, 

i@:(k) 

- iQ0( k )  

(A3.5) 

We recognise, in the invariant associated with g,”r, the 4-momentum of the Klein- 
Gordon field. If we perform an integration by parts in the last expression above, we 
obtain the relativistic angular momentum (see, e.g., [16] p 117) 

(A3.6) 

The PB of the functions in (A3.5) fulfil the (left) Lie algebra of GKG, as can be deduced 
from its usual definition or checked by direct calculation using (A3.2). 

A3.2. The Proca quantum group eP 
The case of GP presents a new feature: the 2-form d @ / P  is only presymplectic due to 
the constraints on the Proca fields ( W O #  P, (4.9), (4.10)). Once the Vo quotient is 
taken, one obtains, with the decomposition (4.20), that the symplectic form w is, from 
(4.23), the sum of three 2-forms of the type (3.15b). Thus, in these Darboux coordinates, 
the formula for the PB is 
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If the spatial ( i  = 1,2 ,3)  components of @ G ) ( k )  and @To$'(k) are used to parametrise 
the manifold of solutions, and the Lorentz condition (4.19) is taken into account, the 
explicit form for the PB in these new coordinates changes to 

Using (A3.7) and (4.21), or (A3.8) and (4.19), one can verify that 

{@&)(k), @Toy(k')} = -i(g"" - k p k " / m 2 ) A k k . .  (A3 -9) 

The conserved quantities are 

and, when restricted to the quantum manifold, 

(A3.11) 

The expressions in (A3.11) can be obtained either by restricting 0 and the RIVF to 
the quantum manifold and then performing the inner product or by substituting in 
(A3.10) the trajectories given by Vo. The latter method shows the ability of the GAQ 
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strained free system and consider the constraints only in the final step of the calculations. 
In this way, the generally cumbersome expressions arising when constraints are present 
may be avoided. 

References 

[l]  Souriau J M 1970 Structure des Systimes Dynamiques (Paris: Dunod) 
Kostant B 1970 Quantization and Unitary Representations (Lecture Notes in Mathematics 170) (Berlin: 

[2] Simms D J and Woodhouse N M J 1976 Lecture Notes in Geometric Quantization (Berlin: Springer) 
Springer) pp 87-208 

Sniatycki J 1980 Geometric Quantization and Quantum Mechanics (Berlin: Springer) 
Woodhouse N M J 1980 Geometric Quantization (Oxford: Clarendon) 

[2a] Kijowski J and Tulczyjev W M 1979 A Symmetric Framework fo r  Field Theories (Lecture Notes in 
Physics 107) (Berlin: Springer) 

Woodhouse N M J 1981 Proc. R.  Soc. A 378 119 
[3] Aldaya V and de Azcirraga J A 1985 Ann. Phys., N Y  165 484 
[4] Aldaya V and de Azcirraga J A 1982 J.  Math. Phys. 23 1297 
[5] Aldaya V, de Azcirraga J A and Wolf K B 1984 J. Math. Phys. 25 506 
[6] Aldaya V and de Azcirraga J A 1985 Int. J .  Theor. Phys. 24 141 
[7] Aldaya V and de Azcirraga J A 1985 J. Phys. A :  Math. Gen. 18 2639 
[8] Casalbuoni R 1976 Nuovo Cimento A 33 389 
[9] Aldaya V and de Azcirraga J A 1983 Phys. Lett. 121B 331 

Milewski B (ed) 1983 Supersymmetry and Supergravity '83 (Singapore: World Scientific) p 466 
[ lo]  Haag R, Lopuszahski J and Sohnius M 1975 Nucl. Phys. B 88 257 
[ l l ]  Sohnius M 1985 Phys. Rep. 128 39 
[12] Aldaya V and de Azcirraga J A 1987 Fortschr. Phys. 35 437 
[13] Kirillov A A 1976 Elements o f t h e  Theory of Representations (Berlin: Springer) 
[14] Kobayashi S and Nomizu K 1962 Foundations ofDiferential Geometry vol 1 (New York: Interscience) 
[15] Klauder J R and Skagerstam B S 1986 Coherent States (Singapore: World Scientific) 
[16] Itzykson C and Zuber J B 1980 Quantum Field Theory (New York: McGraw Hill) 
[17] Berezin F A 1966 The Method of Second Quantization (New York: Academic) 
[18] Dirac P A M 1964 Lectures in Quantum Mechanics (New York: Yeshiva University Press) 

Hanson A, Regge T and Teitelboim C 1976 Constrained Hamiltonian Systems (Rome: Accademia 

Sundermayer K 1982 Constrained Dynamics (Lecture Notes in Physics 169) (Berlin: Springer) 
Nazionale dei Lincei) 

[ 191 Aldaya V and de Azcirraga J A 1987 Proc. Firenze Conf: on Constraint Thheorj) and Relativistic Dynamics 

[20] Newton T D and Wigner E P 1949 Rev. Mod. Phys. 21 400 
ed G Longhi and L Lusanna (Singapore: World Scientific) pp 26-56 

Newton T D 1960 The'orie des Groupes en Physique CIassique et Quantique vol 1, ed T Kahan (Paris: 
Dunod) p 245 

[21] Fradkin E S and Palchik M Ya 1978 Phys. Rep. C 44 249 

[22] Binegar B, Fronsdal C and Heidenreich W 1983 J.  Math. Phys. 24 2828 
[23] Bargmann V 1954 Ann. Math. 59 1 

Fradkin E S, Kozhernikov A A, Palchik M Ya and Pomeranski A A 1983 Commun. Math. Phys. 91 529 


